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Some problems of the analytical mechanics of continuons media are considered. 
The kinematc co~tra~nts, restricting the motion of elements of a continuous 
medium are separated into internal and external constraiuts; the internal sup- 
face stresses in a continuous medium are treated as reactive forces of the inter- 
nal constraints. Sitme the work of these latter on possible displa~ments of 
elements of the continuous medium is not zero in the general case, then the 
internal ~n~raints in a ~ntinuo~ medium should be referred to the category 
of nonideal constraints. The general equation of the dynamics of a continuous 
medium expressing the d~‘Alembe~-grange variational Principle and including 
all the dynamic laws is examined. The work of the internal surface stresses in this 
equation can be given by using the first and second laws of thermodynamics, 
whereupon the general equation of the dynamics of continuous media can be 
represented in two other forms. Furthermore, an extension of the Gauss and 
Chetaev principles to continuo~ media is given. 

1. Let us consider the motion of some continuous medium relative to an inertial rec- 
tangular Cartesian coordinate system ~Ixl~zx3. Let the continuous medium occupy a 
finite domain D of the space 5 2 r r s s, bounded by a closed surface X; in the general 
case D and f: vary with time t. Let r denote a radio-vect~ relative to the origin 
Or of some point of the dimain or its boundary,and let p = p (r, t), V = V (r, 8 

and vv = ~v/~t = w (r , t) be the density and velocity and acceleration fields of the 
continuous medium at the time t. In the domain of continuous motions described by 
smooth functions, the general equations of motion of a continuous medium are [l] 

As is known, these equations express Newton’s second law and the law of mass conserva- 
tion. Here F denotes the density of the mass forces, and pi is the density of the inter- 
nal surface stresses on areas orthogonal to the axes XE~. 

Ordinarily (1.1) are derived from the integral relation [I, 23 

(1.3) 

expressing the theorem of momentum in application to an arbitrary volume T imagined 



918 V.V.Rumiantsev 

extracted from within the domain D which consists of the same particles of the medi- 
um and is bounded by a closed surface 0. Under the condition that the components of 
the stress tensor P a,re smooth functions within the volume 7, the Gauss-Ostrogradskii 
formula 

is valid, from which it follows that the effects governed by the surface density of the 

stresses pn. on the boundary o are equivalent to the effects governed by the volume den- 
sity within 7 [2] 

C(r) = 2 +z+!g (1.4) 

Evidently any particle of the continuous medium is not completely free since the 
other particles surrounding it do not permit it to move arbitrarily in space. For each 

particle, the particles surrounding it impose certain constraints on the displacement (or 
velocity) which can be expressed as sufficiently general conditions for conservation of 

the continuity of the medium and the continuity of the displacement (velocity) field of 
the medium particles. In substance, such kinematic-type constraints are, independently 
of the forces acting on the medium and on its motion laws, internal constraints imposed 
on all the adjacent elements of the medium p]; the constraint equations can be written 

as conditions for the sufficient smoothness of the displacements (velocities). 
Surface forces originate within a continuous medium because of the effect of adjacent 

surrounding particles on the particle of the medium, i.e. they are interaction forces 

between the particles which originate because of the presence of surface cohesions [2] 
between adjacent elements of the continuous medium. Hence, surface stresses with den- 

sity pn, or their equivalent effects with the mass density (1.4) can naturally be treated 
as reactive forces of the internal constraints of the continuous medium. 

Let us note that generally in the mechanics of continuous medium, besides the inter- 
nal constraints, there are also the external constraints, namely, diverse kinetic boundary 

conditions. which can be given on the boundary Z. 

In conformity with the definition accepted in analytical mechanics, we shall under- 
stand the possible displacements 6r of particles of a continuous medium to be elemen- 

tary displacements admitted at a given time by the constraints imposed on the system. 
Then proceeding from the definition of the constraints accepted above, we conclude 
that the possible displacements are arbitrary smooth functions of the locations of points 
of the domain D without violating the continuity of the medium, and therefore, satis- 
fying conditions for points of the boundary Z which result from the kinematic boundary 
conditions. 

Assuming that the possible displacements 6r have partial derivatives with respect to 
xi which are integrable in the domain D, let us compute the work of the reactive 

force (1.4) of the internal constraints on the possible system displacement 

(1.5) 

where the work of the internal surface forces on the possible displacement, by definition, 
is 
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The equality (1.5) indicates that the work of a force with mass density (1.4) equals 
the sum of the work of the external and internal surface forces. 

Furthermore, let us assume for simplicity that the stress tensor is symmetric, i.e. its 
components satisfy the conditions pij = pji. Under these conditions, the work of the 
internal surface forces is [l, 21 

where 

dEij = f _$ + !.$f > , dm = pdz 
3 z 

(1.8) 

Let us note that if the possible displacements of the medium particles are displace- 

ments of a solid,then Gaij = 0 and &Ii = 0. 
In the general case it follows from (1.7) that the work of the internal surface forces 

on the possible displacements is 6Ai # 0. This means that if the stresses in a conti- 
nuous medium are considered as the reaction of the internal constraints, then these lat- 

ter should generally be referred to the category of nonideal constraints, or constraints 
with friction [4, 51. Hence, in order to determine the motion and stresses of a continu- 

ous medium, some additional relationships which play the same part as does the law of 
friction in the mechanics of systems with a finite number of degrees of freedom with 

nonideal constraints, must be given in addition to (1.1) and (1.2). As is known, the 
stresses in a continuous medium are closely connected with its deformations ; The stress- 
strain relationships are generally the relationships which should be specified. The spe- 

cific connection between the stresses and strains is determined by selecting some model 
of a continuous medium [1] . 

If it turns out that 6Ai = 0 for all possible displacements, then in this case the in- 
ternal constraints are referred to the category of deal constraints. An ideal incompres- 
sible fluid for which the stress tensor components are pij = -p6ij, where p is the 
hydrodynamic pressure, 6ij is the Kronecker symbol and the density p of each particle 
is constant, is an illustration of a model of a continuous medium with ideal constraints. 

Under these conditions, we obtain from (1.7) 

6Ai = 
s 

$ 6ij6eij dm = ’ 5 G&ii &n z 0, 
s 

u LJ 

since for an incompressible fluid in conformity with (1.2) 

G&ii = divdr z 0 

Let us note that in the general case for an ideal compressible fluid 

Let us multiply (1.1) scalarly by GrdT and let us integrate over 
any part of it T. We hence obtain the equation 

s P (F - w).8rdr + Sp,.Brds + 6Ai = 0 
11 x 

the domain D or 

(1.9) 

in which the work of the internal surface forces is expressed by (1.6) or (1.7). Taking 
account of (1.4) and (1.5)* Eq. (1.9) can also be written in the equivalent form 
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(1.10) 

Equation (1.9) has been obtained by using (1.1). Conversely,(l. 9) (or (1.10)) can be 

taken as the initial equation and (1.1) derived therefrom. Moreover, all the general 
theorems of the dynamics of a continuous medium can be obtained from (1.9) by apply- 

ing it to an arbitrary volume a within the domain D consisting of the same particles 
of the medium and taking account of (1.2). Indeed, among the possible particle displa- 
cements we consider the translational displacements of the volume 7 as a solid by set- 

ting hr = br,; hence 6~4’ == 0. Taking the vector 6r G outside the integral sign in(1.9) 

and dividing by it, we obtain (1.3) which expresses the momentum theorem. 
Now, let us consider rotational displacements of the volume z as a solid around the 

point Or among the possible displacements by setting 6r z-: 6rp X r . Taking into ac- 

count that hence 6Ai = 0, we obtain the theorem of angular momentum 

(1.11) 

by applying the formula a. (6~ X r) = 69 - (P X a}, taking the vector 69 outside 
the integral sign and dividing by it. 

Finally, let the possible displacements Sr coincide with the actual displacements in 
time dt. Setting 6r s dr = vdt, we obtain the theorem about the kinetic energy 

from (1.9) 
dE = ‘pF.drdz +Sp,.drdr + dk, 

s 
1;: = +‘dz (1.12) 

i n * 

Here ddi denotes the work of the internal surface forces on the actual displacement 
defined by the equalities (1.6) or (1.7) if 6 is replaced in the latter by d. 

Let us note that the actual displacements are among the possible displacements only 
in the case of stationary constraints. The internal constraints in a continuous medium 

are stationary. As regards the external constraints, they can also be nonstationary. In 
the presence of nonstationary constraints, they can be imagined discarded by replacing 

them by reactions which are surface stresses pn not known in advance, and by setting 
ik = dr, Eq. (1.12) can be obtained on whose right side the work of the external sur- 
face stresses pn, the effect of external constraints on a continuous medium, will enter 

as in the case of external stationary nonideal constraints. 
Therefore,(l. 9) includes all the dynamic laws, whereupon it is the general equation 

of the dynamics of continuous media with a symmetric stress tensor. 
Ordinarily one starts from (1.3) and (1.11) in the dynamics of ~ntinuo~ media and 

then obtains the theorem (1.12) by using (1.1) and (1.2). It is however, more logical 
to proceed from (1.9) which contains all the dynamics of continuous media. It should 
also be kept in mind that (1.9). in contrast to (1. l), and the resulting equations (1.3) 
and (1.11) are true for any motions, including even discontinuous motions under the con- 
ditions that the integrals in these equations are finite [l]. 

Iet us note that an equation of the form (1.9) or (1.10) is presented in the book p] 

as a theorem of possible powers. 
It should be stresses that in contrast to the exposition in [3], the work &A’ of the in- 

ternal surface stresses as well as the work of the external surface stresses pn amongwhich 
can also be the reactions of the external constraints, all are included in the general 
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equation (1.9) of the dynamics of continuous media. The presence of terms expressing 
the work of the constraint reactions on the possible displacements in the general equa- 
tion of dynamics is generally characteristic for systems with nonideal constraints with 
both, a finite and an infinite number of degrees of freedom. Because the constraints are 

nonideal knowledge of the active forces applied to the system is inadequate to the deter- 
mination of its motion a as well as the constraint reaction, in contrast to systems with 
ideal constraints: at least the work of the constraint reaction on the possible displace- 
ments should be given in addition to the active forces. 

In the case of the continuous media under consideration, the work of the internal SIX- 
face forces can be found from the heat influx equation 

(1.13) 

if the change 6~ in the internal energy and the elementary external heat influxes 6@‘) 
and others nonthermal kinds of energy eq”” computed per unit mass different from the 

work of the macroscopic mechanical forces are known. As is known [1], Eq, (1.13) is 
equivalent to the first law of thermodynamics, the energy conservation law, in the pre- 

sence of the dynamic equations (1.12). Taking (1. ‘7) and (1.13) into account, the gene- 
ral equation of dynamics (1.9) can be represented as 

c ( p[ F-w).&- 6l.L + 6q(‘) + dq”“] dT + *( p.n. 6r as = 0 (1.14) 
5 E 

if it is assumed that the internal system energy possesses the additivity property. If F, 
u, q(e) and .qxx are known at each point within the domain D and pn on the surface 

2, then (1.14) permits the determination of the motion of the continuous medium under 
given initial and boundary conditions as well as the internal stresses. 

According to the second law of thermodynamics, the elementary external heat influx 
is related to the change in entropy 6s and the uncompensated heat 6q’ > 0 by the 
relationship 

T&s = 6q@) + 6q’ (1.15) 

where T is the absolute temperature. Taking this relationship into account, the general 

equation of dynamics can also be represented as 

c p[(F-w)&-&A+ T&Y- 
l? 

6q' + 6qX"] dT -k s pn .6r da = 0 
c 

(1 
. 
16) 

A closed system of equations of motion and state of a continuous medium [S] can be 

obtained from (1.16) for given F, u, q’ and ‘I.‘;” . In this sense ,(1.14) or (1.16) 
play the same part in the mechanics of continuous media as the general equation of 
dynamics of systems with a finite number of degrees of freedom with ideal constraints. 

Equation (1.9) expresses the d’Alembert-Lagrange variational principle in the dyna- 
mics of continuous media. Infinitesimal displacements from the actual given motion 
of the systems are considered therein. However, this principle is not related to the ex- 
tremum of some functional but it can be modified so that it will express the extremum 
of some expression . 

Let us examine two such modifications of the d,‘Alembert-Lagrange principle which 
extend the Gauss principle p] and the Chetaev principle [8, 91 to a continuous medium. 

2. First let us extend the Chetaev theorem and the Gauss principle to continuous 
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media. 
Let us 

medium 
consider, besides the real motions of the continuous medium, the motions of the 

particles, conceivable according to Gauss [7], which have the very same values 
of the radius vectors r and the velocities v at the time t as in the real motion, and 
satisfy the conditions imposed by the constraints. In other words, at time t the concei- 
vable motions differ from the real motion only by the accelrations which should satisfy 

the conditions of concervation of the continuity and indissolubility (1.2) and the kine- 
matic boundary conditions. 

Let us consider some fictitious motion of the medium in an infinitesimal time inter- 

val from t to t + dt. The possible particle displacements 6r are hence related to the 

changes in acceleration /jw=Gv/dt-w (2.1) 
by the relationships [8] 

?jr=Awq (2.2) 

Here 6~ is the change in the velocity in the fictitious motion during the time dt . Tak- 

ing (2,2) into account, (19) becomes 

I ‘p(F-w).Awdt+Sp,.Awds+~ 6Ai = 0 
1) z: 

where 6Ai is defined by (1.6) taking into account (2.2). 

Let us (imaginarily) free the continuous medium from part (or from all) of the con- 
straints imposed on it, from the external kinematic constraints, say. The possible displa- 
cements of the initial system are among the possible displacements of the liberated sys- 

tem, hence the following equation is valid : 

(2.4) 

Here dv is the change in velocity in the real liberated motion during the time & , pna 
are surface stresses in the system freed from part of the constraints, and 8Ai is detined 

by a formula such as (1.6) with pi replaced by pi” and taking (2.2) into account. 
Subtracting (2.4) from (2.3), we obtain 

(p,, -- P,~~). Aw ds + 6 (6Ai -. aAi) = 0 

This equation can be rewritten as 

A,,6 t- Ada - -40s + s 
’ (pn - p,t’T. Aw ds + & (6/l’ - &C) = 0 

. . 
where the quantities 

&j=+ jn[w&.yd,; Ana=fjw-$)Ldr 
I) 

I) 
characterize the measure of the deviations between the real.(d), the actual freed (a) , 
and the imaginary (6) motions of the medium during the time dt. Taking account of 
(1.6) and (2.2), it is seen that the expression 
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-+6Ai-ddA’)= -~(pi_pPi”).~dz 
(W 

D 2 

is the difference between the work of the internal surface stresses in the actual and freed 

motions of the medium of the “displacements” hw. Since the quantities Ada and Aids 

are essentially positive quantities when the motions (a) and (6) do not coincide with 
the motion (d) we obtain the two following equations from (2.5) 

(2.6) 

which expresses the following T h e ore m : 

A measure of the deviation of the actual (d) motion of a continuous medium from 

some fictitious (6) (actual freed (a)) motion, increased by the difference between the 

work of the external and internal surrace stresses in the actual and freed motions on the 
displacement (2.1) is less than the measure of the deviation of the fictitious (6) motion 
from the actual freed (a) motion. 

This Theorem is the extension of the Chetaev theorem [S] for systems with ideal con- 

straints to a continuous medium. 
Now, let the particles of the medium be freed of all constraints, both external and 

internal, at the time t , i. e. let them become perfectly free, Their accelerations &/dt 
will hence equal F, all the stresses will vanish pi o -- 0, and the second equation in 

(2.6) becomes 
A,,,+$p,,.Awdj-_pi.~dt<A~s (2.7) 

2: 1) 
where 

&a = + s(’ (,w - F)2 dz, Ad6=+$p(F-$)‘d~ (2.8) 
1) 1) 

The inequality (2.7) has been obtained as a corollary of the second inequality in (2.6). 
However, it can be established independently of (2.6) . Indeed, let us transpose the term 

Aas to the left side of the inequality, let us substitute (2. B), let us reduce similar terms, 
and let us perform the evident manipulation, whereupon we hence obtain the inequality 

Using (1.1) and the Gauss-Ostrogradskii formula, we see that the left side of (2.9) is 
zero, which indeed proves the latter’s validity. Taking account of (2.1). let us rewrite 

(2.7) as 
h- ‘p,,wdj-~(-sp~.~dr<Aob-\Tp,~.~d;+ jpi.&$dT I 1) 1 (2.10) 

2: 1) ?: 

in which the quantities Ada and A05 are defined by (2.8). The inequality (2.10) is 

the extension of the Gauss principle to continuous media. 
The measure of the deviation of the actual motion of a continuous medium from the 

motion of free particles, diminished by the work of the external and internal stresses on 
the actual accelerations, is less than the measure of the deviation of any fictitious motion 
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from the free particle motion diminished by the work of the external and internal stres- 
ses on the accelerations of the fictitious motion. 

This Theorem extends the Gauss principle [5] to continuous media for systems with a 
finite number of degrees of freedom constrained by nonideal constraints. This principle 

can be formulated somewhat differently, Indeed, let us substitute (2.8) into (2.10) and 
let us reduce similar terms. We consequently obtain the inequality 

(2.11) 
u 

I;&$,<R 
x D i 

(2.12) 

expressing the T he or e m : 

Among all the particle accelerations 6vidt of a continuous medium at each instant 
which are satisfying the constraints, the actual accelerations will be such accelerations 

w as will minimize the functional (2.12). 
Let usnote that the quantity R equals the difference between the acceleration ener- 

gies of the continuous medium in the fictitious motion 

S+ 
S( ) 

p $sdt 
u 

and the work of all the mass and surface forces 

on the accelerations of the fictitious motion. 

Equilibrium is a particular case of motion; it holds when all the medium particles 
are at rest, i. e. when v = 1~ = 0. Therefore, among all the kinematically admissible 

@] displacements u’ satisfying the constraints, the actual displacements u minimize 
the functional 

The first theorem of potential energy @] follows from this Theorem as a particular 

case. 
Note. The inequality (2.11) is close to the inequality (2.2) in [lO],(but does not 

agree completely with it). 

9. An interesting modification can be given to the Gauss principle for a continuous 
medium. 

Let us consider some fictitious Gaussian motion of a continuous medium during the 
time from t to t + dt. During this time the medium particle will perform an infini- 
tesimal displacement in the fictitious motion 

where 6v is the change in velocity in the fictitious motion during the time dt . The 
expression for the work of the mass and surface forces on an infinitesimal displacement 



Variational principles in mechanics of continuous media 925 

of the fictitious motion is 

s ( 'pF- 
D 

v+ +dr)dtdr+~p,.(v++)dtds+&A’+... 

where 6’Ai is defined by (1.6) with 6r replaced by (v + l/,6v) dt . Let us subtract 

the expression for the work on the considered infinitesimal displacement of the forces 
pw which would be sufficient to produce the actual motion if the medium particles 
were free 

We consequently obtain the expression 

A,=ip(F-w).(v++iv)dtd~+ 
D 

. 

s 1 
Pn* vf +8v)dtd3+6’Ai+... 

x 

(3.1) 

of the work in an elementary cycle consisting of the direct fictitious motion in a field 

of given forces and the back (reverse) motion in the field of forces which would be suf- 
ficient to produce the actual motion if all the medium particles were perfectly free. 

For an analogous cycle constructed for the actual medium motion, the work is 

A= SP(F-w).(v+ +dv)dtdt+ 
Ll 

v++dv)dtds+d’A”+... 

(3.2) 

where d’Ai is defined by (1.6) with 6r replaced by (V + l/s&) dt, 

Subtracting (3.2) from (3.1). we obtain 

A,-A= ‘p(F-w)+r-dv)++ 
s 
IJ 

s 
’ pn. (6~ - dv) $ ds + 6’Ai - d’A’ 
c 

Let A denote the change during passage from the actual motion to a slightly different 
fictituous motion. Taking account of (2.1) this expression can be represented as 

66’4’ = - ’ s pi.i!$h!$& 

D i 

Taking (2.2) into account, we find from (1.9) that 

AA ,=U 

Applying the operation A once again to (3.3) and taking into account that Al7 - 
.~Pi .L IJ for forces and stresses independent of accelerations, we obtain 
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Therefore, it has been established for a continuous medium [S, 91, 

Chetaev principle. The work of an elementary cycle consisting of the forward 

motion of a continuous medium in the field of mass and surface forces and the reverse 
motion in a fieldof forces which would be sufficient to produce the actual motion if the 
medium particles were perfectly free,has (at least a relative) maximum in the class of 

fictitousGaussian motions for the actual motion. 
Just as the D’Alembert-grange principle, this principle can also be expressed taking 

into account the first and second laws of thermodynamics. 
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We present an analytical method for the computation of problems of incom- 
pressible boundary layer theory based on an application of the method of SUC- 

cessive approximations. The system of equations is reduced to a form suitable 
for integration. Parameters characterizing the external flow and the body geo- 
metry are contained only in the coefficients of the system and do not enter 
into the boundary conditions. The transformed momentum equations are inte- 


